Evolution of communication using symbol combination in populations of neural networks

نویسنده

  • Angelo Cangelosi
چکیده

This paper uses a model of neural networks and genetic algorithms to simulate the evolution of communication in populations of evolving neural networks. It focuses on the emergence of simple forms of syntax, i.e. the combination of two symbols. The simulation task resembles SavageRumbaugh & Rumbaugh’s experiment [11] on ape language and symbol acquisition. The simulation results show the evolution and cultural transmission of languages based on combination of grounded symbols. The model is analyzed according to the issues of the symbol grounding and symbol acquisition problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...

متن کامل

طراحی و آموزش شبکه‏ های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت‏ های موازی

Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...

متن کامل

Modeling the Evolution of Communication: From Stimulus Associations to Grounded Symbolic Associations

This paper describes a model for the evolution of communication systems using simple syntactic rules, such as word combinations. It also focuses on the distinction between simple word-object associations and symbolic relationships. The simulation method combines the use of neural networks and genetic algorithms. The behavioral task is influenced by Savage-Rumbaugh & Rumbaugh’s (1978) ape langua...

متن کامل

Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks

In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999